Kate Harrison and Anant Sahai, UC Berkeley

DySPAN 2011

Aachen, Germany

Unique opportunity: primary and secondary interaction, tradeoff

- Unique opportunity: primary and secondary interaction, tradeoff
- Needs of primary potentially not met by FCC rules - interference aggregates

- Unique opportunity: primary and secondary interaction, tradeoff
- Needs of primary potentially not met by FCC rules - interference aggregates
- Mitigate tension between types of secondaries

Protect primaries

- Protect primaries
- Flexibility for secondaries

- Protect primaries
- Flexibility for secondaries

- Protect primaries
- Flexibility for secondaries

De Vany, et. al. + FCC

Interference aggregates

First model

Primary: 500 m 1 kW

Primary: 500 m 1 kW

Primary:

500 m

1 kW

Primary:

500 m

1 kW

Primary:

500 m

1 kW

Secondary: 30 m

1 W

Need for national analysis

- Holes from other protection radii
- Coasts
- Population

Second model

Place secondaries on map

Second model

Place secondaries on map

Calculate aggregate interference

Second model

Place secondaries on map

- Calculate aggregate interference
- Test for TV reception

Channels lost

Channels lost 16 10 Secondary: 30 m 1 W 1 active device Density not unrealistic: DoS per 40 people

Channels lost 16 10 Secondary: 30 m 1 W 1 active device Density not unrealistic: DoS per 40 people Fine in rural areas

Channels lost 16 10 Secondary: 30 m 1 W 1 active device Density not unrealistic: DoS per 40 people Fine in rural areas Problem in urban areas

Channels lost: vary secondary density

Channels lost: vary secondary density

Secondary: 30 m 1 W

Databases

Databases MAC

Databases
MAC
Density = ?

Naïve approach: fixed power density

Naïve approach: fixed power density

Naïve approach: fixed power density

Naïve approach: fixed power density

Naïve approach: fixed power density

Naïve approach: fixed power density

Rural preference

Increase r_n

Urban preference

Sacrifice power Need spectrum Decrease r_n

Goal

Ideal world: everyone wants the same thing

Ideal world: everyone wants the same thing

Ideal world: everyone wants the same thing

Primary can handle fixed interference

- Primary can handle fixed interference
- Secondary can use power $P_{dream}(x)$

- Primary can handle fixed interference
- Secondary can use power $P_{dream}(x)$
 - Assumes other secondaries use same

$$P_{dream}(x) = K \cdot x^{\alpha - 1}$$

Naïve approach fails

Interference seen by primary is unbounded!

$$\int_{\epsilon}^{\infty} P_{dream}(r)r^{-\alpha}dr = K \cdot \int_{\epsilon}^{\infty} \frac{1}{r}dr = \infty$$

Distance between TV receivers and secondaries

Cannot increase power so aggressively

- Cannot increase power so aggressively
- Many choices for power scaling rule

- Cannot increase power so aggressively
- Many choices for power scaling rule
- Maintain fairness: scale data rate

- Cannot increase power so aggressively
- Many choices for power scaling rule
- Maintain fairness: scale data rate
 - Shannon: rate = $\log_2 \left(1 + \frac{\text{signal power}}{\text{noise power}} \right)$

• Give users percentage of "dream rate"

$$0 \le \gamma < 1$$

• Give users percentage of "dream rate"

$$0 \le \gamma < 1$$

• That is, $R_{new}(x, \gamma) = \gamma \cdot R_{dream}(x)$

• Give users percentage of "dream rate"

$$0 \le \gamma < 1$$

- That is, $R_{new}(x, \gamma) = \gamma \cdot R_{dream}(x)$
- Given this γ , we know that

$$P_{new}(x,\gamma) = K' \cdot x^{\gamma(\alpha-1)}$$

• Give users percentage of "dream rate"

$$0 \le \gamma < 1$$

- That is, $R_{new}(x, \gamma) = \gamma \cdot R_{dream}(x)$
- Given this γ , we know that

$$P_{new}(x,\gamma) = K' \cdot x^{\gamma(\alpha-1)}$$

Guaranteed to be bounded

Dream power density

New power density

New power density

Fraction provided

Metric

- Ratio of "dream rate" to real rate (γ)
 - Dream rate: rules made for that user
 - Real rate: rules made for everyone

Two models: secondary transmission distance

Hotspot

Cellular

- Same power
- Different user placement

Hotspot rules and use

Two models: secondary transmission distance

Hotspot

Cellular

- Same power
- Different user placement

Cellular rules and use

Rate-ratio CCDFs

Review

- Problem: primary protection
 - Solution: power density
- Tension: rural vs. urban users
 - Solution: intelligent power scaling